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1. INTRODUCTION

Tensor equations of the form

AX + XA =G (L1

arise in a variety of problems in continuum mechanics; cf. Sidoroff (1978), Guo (1984), Hoger and
Carlson (1984), Leonov (1976), Stickforth (1982-1983), Mehrabadi and Nemat-Nasser (1987), Dienes
(1979), Stickforth and Wegener (1988), Hoger (1986), Nemat-Nasser (1990), Truesdell (in press),
Wheeler (1990), and Scheidler (to be published) for applications to kinematics and constitutive
modeling. Here the sccond-order tensors A and G are regarded as known, and we wish to solve (1.1)
for the sccond-order tensor X. For the applications considered in the aforementioned references, A ic
symmetric and positive-definite. This restriction, which will be imposed here also, guarantees that a
solution X of (1.1) cxists and is unique. Indeed, relative to any principal basis for A, this solution is

given by the simple component formula

X. = i, (1.2)

where a; are the (nccessarily positive) eigenvalues of A. Of course, 1o actually compute the
components of X by mcans of (1.2), we must first solve for the eigenvalues and eigenvectors of A.
This has motivated scveral authors to seek explicit formulas for the tensor X directly in terms of the
tensors A and G. An cxample is the formula of Sidoroff (1978) and Guo (1984) for the case where G

is skew and the underlying vector space is three-dimensional:

x=—_1 __[(1I-1,)G - (4% +Gan)]. (1.3)

I, T -1,

Here 1, 114, and 111, dcnote the principal invariants of A. Since equations of the form (1.3) are often
said to be displayed in direct notation, we will refer to formulas of this type as direct formulas for X

or direct solutions of (1.1).

Although the derivation of the component formula (1.2) is a trivial exercise, the derivation of
direct formulas for X is a nontrivial problem. Furthermore, whereas the component formula (1.2) is

valid for any finite-dimensional vector space, the direct formulas become more complex as the
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dimension of the underlying vector space increases. For example, in the two-dimensional case the

solution of (1.1) for skew G is

x=Llg, (14)
IA

which is substantially simpler than its three-dimensional counterpart (1.3). The formula (1.4) is a
special case of the second of two direct formulas obtained by Hoger and Carlson (1984) for arbitrary
G in the two-dimensional case. For the three-dimensional case, Sidoroff (1978), Hoger and Carlson
(1984), Leonov (1976) and Stickforth (1982-1983) have obtained direct solutions of (1.1) for arbitrary
G. For the two-dimensional and three-dimensional cases, Mehrabadi and Nemat-Nasser (1987)
obtained direct formulas for X when G = AH — HA with H arbitrary. For the three-dimensional case
with G (and thus X) skew, Sidoroff (1978), Guo (1984) and Dienes (1979) obtained formulas for the

axial vector* of X in terms of A and the axial vector of G.

The direct solutions of (1.1) have been used to obtain direct formulas for various tensors of

interest in continuum mechanics. Examples include formulas for:

(1) the material time derivatives of the stretch and rotation tensors in terms of either the velocity
gradient (Guo 1984; Stickforth and Wegener 1988) or the stretching and spin tensors
(Mchrabadi and Nemat-Nasser 1987; Dienes 1979; Stickforth and Wegener 1988; Hoger
1986) or the material time derivatives of the Cauchy-Green tensors (Hoger and Carlson
1984);

(2) the stretching tensor in terms of the Jaumann rate of the left Cauchy-Green tensor (Sidoroff
1978; Leonov 1976);

(3) the derivative of the square root of a tensor (Hoger and Carlson 1984);

(4) the elastic and plastic spin tensors in terms of the corresponding stretching tensors (Nemat-
Nasser 1990);

*The axial vector of a skew tensor G is the unique vector g such that Gv = g x v for every vector v, where g x v denotes the
vector cross product of g and v.




(5) the spin tensor in terms of the rotational momentum and the Euler tensor, for a body
undergoing a rigid motion (Truesdell, in press).

The derivatives of the stretch and rotation tensors with respect to the deformation gradient (Wheeler
1990; Scheidler, to be published) also satisfy tensor equations of the form (1.1).

Now the tensor G on the right-hand side of (1.1) may depend on A and some other tensor, say H,

which is regarded as known. Expressions for G of the form

AH - HA, AHA, HA - AH', AH - H'A,
AH + H'2 HA + AH", A’H + HA? (1.5)

occur in the applications listed above; here H' denotes the transpose of H. Of course, to obtain a
direct solution of (1.1) in these cases we can simply substitute the expression for G in terms of A and
H into one of the direct solutions which are valid for any G. However, in many of these cases there
exist direct formulas for X which are simpler than (but necessarily equivalent to) the formulas obtained
by this approach. One of the goals of this paper is to develop methods which yield these simpler

formulas with 2 minimal amount of computational effort.

The paper is organized as follows. Section 2 contains some preliminary material. In Sections 3
and 4 we study the general properties of the solutions of the equation (1.1) and the equation obtained
from (1.1) by setting G = AH - HA, i.c., the tensor equation

AX + XA = AH - HA . (1.6)

By "general" properties we mean properties which are independent of the dimension of the underlying
vector space. We show that when G is given in terms of A and some tensor H by one of the
expressions in (1.5), the solution of (1.1) has a simple expression in terms of the solution of (1.6).
Furthermore, we show that the solution of (1.1) for arbitrary G can be expressed in terms of the
solution of (1.6) with H = G.

In Sections 5 and 6 we restrict attention to the three-dimensional and two-dimensional cases,
respectively, since these are the cases of most interest in continuum mechanics. We utilize




Rivlin’s (1955) identities for tensor polynomials in two variables to derive direct solutions of (1.1) for
the special case where G is orthogonal to every polynomial "1 A. These formulas are then used to
derive direct solutions of (1.6) for aibitrary H, and those formulas are in turn used to derive direct
solutions of (1.1) for arbitrary G. When G is given by one of the expressions in (1.5), simpler direct
solutions of (1.1) follow from the identities in Section 4 and our direct solutions of (1.6). Several of
the direct forinulas derived in this paper have been obtained previously by some of the authors
mentioned above. However, our derivations differ from theirs, and we derive some new formulas as
well. Our emphasis on the special case (1.6) of the tensor equation (1.1) was motivated by some
results in the paper of Mehrabadi and Nemat-Nasser (1987); sece the comments following equation

(4.5) in this paper.

In Section 7 we use one of our formulas to derive a new direct formula for the spin tensor in
terms of the rotational momentum and the tensor of inertia for a body undergoing a rigid motion. In a
follow-up paper (Scheidler, to be published) we use the general properties and the direct formulas
obtained here to derive direct formulas for the derivatives of the stretch and rotation tensors with
respect to the deformation gradient. We apply those results to the derivation of direct formulas for the
material time derivatives of the stretch and rotation tensors and also to the derivation of direct
formulas for the stress in a hyperelastic material in terms of the derivative of the strain ¢nergy with
respect to the right stretch tensor. The latter problem was solved recently by Wheeler (1990) for the

isotropic case.
2. ALGEBRAIC PRELIMINARIES

The underlying vector space is a finite-dimensional inner product space ¥ over the reals. By a
second-order tensor we mean a linear transformation from ¥ into 9. The vector space of all second-
order tensors is denoted by Lin. Sym and Skw arc the subspaces of Lin consisting of symmetric and
skew tensors. Throughout this paper A denotes an arbitrary symmetric positive- definite tensor with
cigenvalues @; > 0,i =1, 2, ..., N, where N is the dimension of 4. The identity tensor is denoted by I
B, G, H, and X denote second-order tensors which are arbitrary unless specified otherwise. The inner
product of B and H is

B+H :=tr (BTH) . Q.1




sym H = % (H+H), skwH = % (H - H) . (2.2)

We record the following identities for later use:

2sym (AH) = AH + HA = AH + HA - 2 (skw H) A
= AsymH+(symH)A +AskwH - (skwH) A, 2.3)
2sym (HA) = HA + AH' = AH + HA - 2A skw H

AsymH + (symH)A + (skw H) A - A skw H , 24

2skw (AH) = AH — H'A = AH - HA + 2 (skw H) A
AsymH - (sym H)A + A skw H + (skw H) A , (2.5)

HA - AH' = HA - AH + 2Askw H
(symH)A-AsymH+ AskwH+ (skwH) A . 2.6)

2 skw (HA)

i}

"

A tensor H is a polynomial in A if H = ¢,, A™ + ¢,,_; A" + ... + ¢, A + ¢, I for some
nonncgative integer m and scalars ¢, ¢y, ..., ¢,,. The subspace of Lin consisting of all polynomials in

A is denoted by 2 (A). The Cayley-Hamilton theorem implics that

P (A) = span {I, A, ..., A¥}
= span (A, A%, ..., AV}
=span {., A%, A7 1,4, A% ). Q.7

Let 2 (A)* denote the orthogonal complement of T (A), i.e., H € P (A)' iff H is orthogonal to every
polynomial in A. Then from (2.7) and (2.1) it follows that




He PA;- ot (AH)=0, Yie (0,1, .., N-1)
oS uw@H) =0, Yie (1,2, .., N}
o tr (A*H) = 0, Vinteger k . 2.8)

In particular, if H e P (A)* then H is deviatoric, i.c., tr H = 0. Also note that every skew tensor

belongs to P (A)*.

By a fourth-order tensor we mean a linear transformation from Lin into Lin. K denotes an
arbitrary fourth-order tensor; the image of H € Lin under K is denoted by K [H]. It is easily verified

that the following two conditions are equivalent:

K H) = (K [H);
Ki{sym Hl=sym K[H] and K [skw H] =skw K[H]. 2.9

If these conditions hold for each # € Lin we say that K is even. Similarly, it is easily verified that

the following two conditions are equivalent:

K H) = - (K [H);
K (sym H] = skw K[H] and K [skw H] =sym K [H] . (2.10)

If these conditions hold for every H € Lin, we say that K is odd. The transpose of K is the unique
fourth-order tensor K 7 with the property

B-KT{Hl=K[Bl+H, VB,He Lin. Q.11
We say that K is symmetric if KT = K .
3. THE TENSORS L, AND M,

In this section we study the properties of five fourth-order tensors associated with any symmetric




positive-definite second-order tensor A. The two most important of these are denoted by L, and M,

and charactcrized by the conditions
X=L,[G]le2AX+XA =G, 3.1
X=M,[HHAX + XA =AH - HA . 3.2)
The other fourth-order tensors are denoted by N, B, and C,. N, is introduced primarily to simplify
the statement of some of the identities relating L, and M,. B, and C, are introduced to facilitate the
definition of the other tensors and the derivation of their properties.
The fourth-order tensor B, is defined by

B, [X] =AY + XA . (3.3)

Note that B, is invertible. Indeed, the condition B, [X] = G is just the tensor equation (1.1) which, as
pointed out in the introduction, has a unique solution X for any given G. We denote the inverse of B,

by L;:

L,:=(BY". (3.4)

Then B, [X] = G iff X = L, [G), which is equivalent to thc statement (3.1). If we let / denote the

fourth-order identity tensor on Lin, then*

L,B =B L, =1, 3.5)

which is equivalent to the identities

L,[AH+HA]=A L, (H+ L, (HHA=H . (3.6)

*The product of two fourth-order tensors is defined to be their composition: (L, B,) [X): = L, [B, [X]} for each X eLin.




The fourth-order tensor C, is defined by
C,[H):=AH - HA . 3.7
It is easily verified that C, and B, commute; indeed,
c,B,=B,C, =C,:. (3.8)
We define the fourth-order tensor M, by
Lc =CL,. 3.9

where (3.9); follows from pre-multiplying and post-multiplying (3.8), by L, and using (3.5). From
(3.9) and (3.7) we sce that

M, (H =L, [AH - HA)=A L, [H] - L, [H] A . (3.10)
Then (3.2) follows from (3.1) (with G = AH - HA) and (3.10),. From (3.9), (3.8), and (3.5) we
obtain
M, B, =8B, M=C=L,C.= CaL,, 3.1
which is cquivalent to the identities
M, [AH + HA] = A M, [H) + M, [H] A
= AH - HA
=L, [A’H - HAY = A® L, [H] - L, [H) A, (3.12)
The fourth-order tensor N, is defined by

N,=M,C,=C, M, =L, (C), (3.13)

where (3.13)2‘3 follow from (3.9). From (3.13) and (3.7) we see that




N, [H] =M, {AH - HA)=A M, [H] - M, [H] A
= L, [A’H + HA® - 2 AHA] . (3.14)

By setting G = A*H + HA® — 2 AHA in (3.1) and using (3.14),, it follows that
X = N, [H] < AX + XA = A’H + HA® - 2 AHA . (3.15)

The motivation for introducing the tensor N, is based not so much on the result (3.15) as on the

frequent occurrence of the expressions in (3.14), ,.
It follows from the results above that the set of fourth-order tensors
Sp = {B,, Cy, L, My, Ny} (3.16)

is commutative. Each tensor K, € S, also has the following properties:

(K) =K, : (3.17)

K,[BH] =B K,[H], ifAB=BA; (3.18)
K, |HB] =K, [H)B ,if AB=BA; (3.19)
Koag (QHQ = Q K, (H1 Q" .V Q € Onh, (3.20)

where Orth denotes the set of orthogonal tensors in Lin. In other words, K, [H] is an isotropic
function of A and H which is linear in H. Furthermore, B,, L, and N, are even, whereas €, and M,
are odd. The easicst way to establish these properties is to first prove them for the tensors B, and C,,
and then use the definitions (3.4), (3.9), and (3.13) to provc the properties for L,, M,, and N,. For
example, it is easily established that (3.18) holds for K, = B, or C,. To prove (3.18) for K, = L,,
use the result B, [BH] = B B, [H}, apply L, to obtain BH = L, [B B, [H]), and then set H = L, [X]
to obtain B L, (X] = L, [BX]. To prove (3.18) for K, = M,, use the results for K, = C, and L,:

MA [BH] = LA [CA (BH]] = LA (B cA (H])
=B L,g [cA [””=BMA [H]) .




The proof of (3.18) for K, = N, is similar.
In addition to the expressions (3.10) for M, in terms of L,, we also have
M,[H =H-2L, [HHA=2AL,[H -H. (3.21)
To prove (3.21),, for cxample, use (3.10), (3.6), and (3.19) (with K, = L, and B = A):
M, [H] = L, [AH - HA]
=L, [AH + HA) - 2 L, [HA]
=H-2L [H]A.

In addition to the expressions (3.14), , for N, in terms of M,, we also have

N,{Hl=AH-HA -2 M, [H] A
= HA - AH + 2 AM, [H]. (3.22)

To prove (3.22),, for cxample, use (3.14);, (3.12), and (3.19):

N, (H] = M, [AH - HA|
= M, [AH + HA] - 2 M, [HA|
=AH - HA-2 M, [H) A .

From (3.21) we obtain the following cxpressions for L, in tcrms of M,:

Ly (H) = — (H - M, () A”

= = A7 (H + M, (H)

= ?1 (A™H + HA™ + A™ M, [H) - M, (H] A7) . (3.23)

10




Now from (3.14) it follows that
AN [HIA =M, [HHA"' - A" M, [H]. (3.24)
Then by (3.23), and (3.24) we obtain the following expressions for L, in terms of N,:

L, (H) = % (A7'H + HA™ - A" N, [H] A7)

= _}‘_ A (AH + HA - N, [H) A™ . (3.25)

To establish our next result we need the fact that
A’H + HA* =2 AHA & AH = HA . (3.26)
This can be verified by taking components relative to a principal basis for A:
A’ + HA® = 2 AHA & (@ + a’ - 2a,a) H; = 0
(g, - a)*H;=0

& AH -HA=0.

Since L, is nonsingular, from (3.7), (3.10), (3.12),, (3.14), (3.23), (3.25), and (3.26) we conclude that

the following conditions are equivalent:

AH = HA,
AL IH = L, [HA,
AM,[H = t M, [HA,
C,[Hl =0,
M,[H] =0,
N, [H] = 0,
11




1

LA [H] = EA_‘H'

L H) = LA,

4 2

L, [(H = %(A’1H+HA"). (3.27)

Now suppose that H € P (A). Then AH = HA, and thus L, [H] = AT H. Andsince A” € P(A),
it follows that L, [H] € P (4). Conversely, if L, [H] € P (A) then by (3.6), it follows that H € P (A).
Thus we have shown that

L,[Hle PA)e=He PA). (3.28)

In other words, if AX + XA = H, then X is a polynomial in A iff H is a polynomial in A. From (3.6),

we also sce that
2t (A" L, (H]) = (A*H), VY integer k. (3.29)

Then from (3.29) and (2.8) we conclude that

L,(Hle PAY = He PA)*. (3.30)
In other words, if AX + XA = H, then X is orthogonal to cvery polynomial in A iff H is orthogonal to
every polynomial in A. Since tr (A* (AH — HA)) = 0 for any integer &, from (2.8) with
H — AH - HA we conclude that

C,|[Hl=AH-HA e P(A). (3.31)

Then from (3.10),, (3.14),, (3.30), and (3.31) we see that

M, (H], N, [H] e P(A)*. (3:22)

12




In particular, for any tensor H the solution X of (1.6) is orthogonal to every polynomial in A. Of

course, since A and H commute for any H € P (A), from (3.27) we also have

C,[Hl=M,[H=N,[H =0, YHe P(4). (3.33)

We conclude this section with a description of our method for generating direct formulas for
L, [H] and M, [H]. Suppose that by some means we have obtained a direct formula for L, [G]
which is valid for any G € 2 (A)* but not necessarily for other G. As we will see in Sections 5
and 6, such formulas are easily derived in the two-dimensional and three-dimensional cases. Since
AH - HA € 2?(A)* for any tensor H, and since M, (H] = L, [AH - HA], by setting G = AH - HA
in our formula for L, [G] we obtain a formula for M, [H] which is valid for any tensor H. Then
from (3.23) we obtain formulas for L, [H] which are valid for any H. Altematively, we can use the
relation N, [H] = M, [AH - HA] to obtain a formula for N, [H], and then use (3.25) to obtain
formulas for L, [H] which are valid for any H. In these formulas for L, [H] we can, of course,

replace the A~ terms by a polynomial in A via the Cayley-Hamilton theorem.

4. SOME USEFUL IDENTITIES

Consider the tensor equation

AX + XA=GA,H), @.n

where G(A, H) denotes one of the expressions listed in (1.5). In terms of the notation introduced in
the previous section, the solution of (4.1) is X = L, [G(A, H)]; and for the special case

G(A, H) = AH - HA this solution can also be written as X = M, [H]. As we will see in the next two
sections, the direct formulas for M, [H] (for arbitrary H) are much simpler than the direct formulas for
L, [G] (for arbitrary G). This should not be too surprising in view of the method described in the
previous section for generating these formulas. For the cases where G(A, H) is given by one of the
other expressions in (1.5), the existence of relatively simple direct formulas for X is due to the fact
that there are simple expressions for L, [G(A, H)] in terms of M, (or N,), A and H. The purpose of

this section is to derive these identities.

13




We begin with the case G(4, H) = AHA, that is, with the tensor equation

AX + XA = AHA | 4.2)
which is equivalent to the tensor equation

A'X+ XA '=H. 4.3)
These equations arise in the problem of finding formulas for the material time derivative of the right
stretch tensor in terms of the stretching tensor (Mehrabadi and Nemat-Nasser 1987; Hoger 1986).
Since the solution of (4.2) is X = L, [AHA], whereas the solution of the equivalent equation (4.3) is
X = L. [H], we sce that

L. (H =L, [AHA]=A L, [H) A, (4.4)

where (4.4), follows from (3.18) and (3.19) (with B = A). By substituting the expressions for L, [H]
in (3.23) and (3.25) into (4.4), we obtain the identities

Lyt [H] = ~ A (H - M, [H)

I\)lu—-

NI—-

(H + M, [H]) A

1

&l

(AH + HA - N, [H)) . (4.5)

In other words, the solution X of (4.2) and (4.3) is also given by any of the three expressions on the
right-hand side of (4.5). The second and third of these identities are equivalent to ones obtained by
Mechrabadi and Nemat-Nasser (1987) under the assumption that H is symmetric. For the three-
dimensional case, they used these identities and their direct formula for M, [H] to obtain direct
solutions of (4.3).*

*Their equations (8.8), (8.12)-(8.13) and (8.16) correspond to equations (4.3), (4.5),_md (4.5), in this paper. In their derivation
of (8.13), and apparently of (8.16) as well, they utilized the symmetry of H (= 2 D in their notation). However, these results,
as well as their direct formulas for L,.1 [H], are valid for arbitrary H; see also the comments following equation (5.26) in this
paper.

14




Compared with (4.4), the formula for M, | in terms of M, is much simpler:
Mi-=-M,. (4.6)

Indeed, from (3.2) we see that X = M, [H] iff A" X + X A7 = A (-H) - (-H) A7V iff
X = M, [-H], which yields (4.6). Note that the identities (4.5) can also be obtained by replacing
A with A™! in (3.23) and then using (4.6) and (3.14).

Now consider the case G(A, H) = A’H + HA?, that is, the tensor equation
AX + XA = AH + HA?. 4.7

This equation arises in the problem of finding formulas for the Jaumann rate of the left stretch tensor
in terms of the stretching tensor (Scheidler, to be published). Alternate expressions for the solution

X = L, [A’H + HA? of (4.7) follow from the identities

L, [A’H + HAY) = A> L, [H) + L, (H} A®
=2 L, [H] A* + (AH - HA)
=2 A’ L, [H] - (AH - HA)
=_;_ (AH + HA + N, (H)) . 4.8)

(4.8), follows from (3.18) and (3.19); (4.8)2'3 follow from (4.8), and (3.12); (4.8), follows from
(3.14),, (4.4), and (4.5),.

Next, we derive altemnate expressions for L, [G(A, H)] when G(A, H) = HA - AH", AH - H'A,
AH + H"A or HA + AH”; for applications of the tensor equation (4.1) in these cases see Guo (1984)
and Scheidler (to be published). We claim that

L, [HA - AH"} = 2 L, [skw (HA)]

= skw H - M, [sym H]
=skw (H - M, [H]) , “4.9)
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L, [AH - H'A] =2 L, [skw (AH))
= skw H + M, [sym H]
=skw (H + M, [H)), 4.10)

L, [AH + H"A] = 2 L, [sym (AH))]
=H-2L,[skwH] A
=sym H + M, [skw H]
=sym (H + M, [H]) , 4.11)

L, [HA + AH'] = 2 L, [sym (HA)]
=H-2A L, [skw H]
= sym H — M, [skw H]
= sym (H - M, [H]) . (4.12)

These identities follow casily from (2.3)~2.6), (3.6), (3.10), (3.18), (3.19) and the fact that M, is odd
(see (2.10)).

We conclude this scction with two identities which are used in Scheidler (10 be published):

M, [AH - H'A] = 2 M, [skw (AH))
= A skw H - (skw H) A + N, [sym H] , 4.13)

M, [HA - AH"] = 2 M, [skw (HA)]
= A skw H — (skw H) A - N, [sym H] . (4.14)

These identitics follow easily from (2.5), (2.6), (3.12), and (3.14).
5. FORMULAS FOR THE THREE-DIMENSIONAL CASE

In this section we derive direct formulas for the fourth-order tensors L,, M,, and N, under the
assumption that the underlying vector space ¥ is three-dimensional. We begin by listing some
identities for second-order tensors which will be used in the derivation of these formulas. The

principal invariants of a second-order tensor B are denoted by Ip, Il and III4:
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Ig=trB, Ilg:= % ((tr B)? - tr (B?))], Il :=det B .

From the Cayley-Harnilton theorem we obtain

A= A -1 A+, T,
and
N, A=A -, A+II, 1.

5.1

(5.2)

(5.3)

Since the expression 1, 7 — A occurs frequently below, it is convenicnt to introduce a special symbol

for this expression:

A=11-A.

The cigenvalues of A are a, + a3, gy + a,, a; + a4, in particular, A is symmetric positive-definite.

Also notc that (Sidoroff 1978; Guo 1984; Stickforth and Wegener 1988)
Hi; =1, 11, -1, = (@, + @) (@, + a3) (ay + a)) ,

and that (Guo 1984)
H; A7 =A%+ 10, 1.

The following identities are due to Rivlin (1955):

A’HA® = 1, AHA - lii, (AH + HA)
+la AP+ (AL DA+ L, T,

A’HA + AHA* =1, AHA -1l H
+ Ly At + (A HA+T 1,1,

A’H + HA’ = - AHA + |, (AH + HA) - I, H
+1, A+ AL A+ oA DT,

17
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oA, H) = r [(L, I - I, A) H]

=Hiy Ly - I, Ly == Ty (5.10)
oA, H) = tr [(A% - I, A) H]

=l -l Lip = = Lian - (CRRY
(A, H) = —r [(I, T - A) H]

=hiy-Lily=-Liy, (5.12)
0y(A, H) = tr [((A* - 1, A + 11, ) H]

=Tey = Yo La + Uy Ty = T Loy, (5.13)

Rivlin's identitics, as well as (5.2)-(5.5),, are valid for any second-order tensors A and H. However,

we will continue to assume that A is svmmetric positive-definite.

Obscrve that if H € 7 (A)* (sce (2.8)) then the second ling on the right-hand side of Rivlin’s

identities (5.7)-(5.9) vunishes. In this case we also have the identity
A(AH + HA)A=1lI; H, VHe P(A)*. (5.14)

This follows by substituting (5.4) into the lefi-hand side of (5.14), expanding, and then using (5.5),,
(5.8), and (5.9). Similarly, from (5.5),. (5.7), and (5.9) we obtain the identity

(A*+ 1L, D H (A* + 1, ) = i (AH + HA), V He P(A). (5.15)
In view of (5.6) we sce that the identitics (5.14) and (5.15) arc equivalent.

Now suppose that G € P (4), in which casc L, [G] e P(A)" also (see (3.30)). If we set
H = L, [G] in (5.14) we obtain

AAL [Gl+L [GIAA=11; L, [G].
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Butsincc A L, [G] + L, |G] A = G for any tensor G (¢ (3.6)), we have the following simple
formula for L, [G]):
Mi; L, [Gl= AGA, VGe P(A). (5.16)

By substituting the definition (5.4) of A into (5.16) and expanding, we obtain the altemate formula
H; L, [Gl=15G -1, (AG + GA) + AGA, V Ge P(A). (5.17)
By using Rivlin’s identity (5.9) with H = G, we see that (5.17) is equivalent to the formula

M L, (Gl = (3-11,) G - (A’G + GAY), VYV Ge PA). (5.18)

4

In view of (3.1), the formulas (5.16)-(5.18) yield simplc direct solutions of the tensor equation (1.1)
when G e P (A)" Since any skew tensor belongs to P (A)*, the formulas (5.16)~(5.18) hold in
particular for any G € Skw. For this special case the formula (5.18) was obtained by Sidoroff (1978)
and Guo (1984). Their derivations employ the axial vector associated with a skew tensor and thus do

not carry over 1o the more general case where G need only belong to P (A):.

Since M, (H] = L, |AH - HA|, and sincc AH - HA € P (A)" for any tensor H (scc (3.31)), by
setting G = AH - HA in (5.16) and (5.17) we obtain the following simple formulas for M, [H]:

1I; M, (H] = A (AH - HA) A
= 12 (AH - HA) - 1, (A’H - HA®) + A’HA - AHA® . (5.19)

Furthermore, since
AH - HA = HA - AH , (5.20)

by (5.19), we also have

Iy M, ([Hl=A (HA - AH) A
=AHA - A’HA . (5.21)
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The formula (5.19), was obtained by Mehrabadi and Nemat-Nasser (1987) by repeated applications of
the Cayley-Hamilton theorem. We emphasize that (5.19) and (5.21) are valid for any tensor H. In
view of (3.2), these formulas yield simple direct solutions of the tensor equation (1.6). Furthermore,
in view of (3.1) and the identities (4.5), ,, (4.9), (4.10), (4.11),,, and (4.12), 4, the formulas
(5.16)«(5.18), (5.19) and (5.21) yield simple direct solutions of (4.1) when G(A, H) = AHA,
HA - AH", AH - H'A, AH + HA or HA + AH".

Since N, [H] = M, [AH - HA), by replacing H with AH - HA in (5.19), we obtain the formula

I; N, [H =4 (A’H + HA> - 2 AHA) A . (5.22)

By substituting (5.4) into (5.22), expanding, and then using (5.2) to reduce the A* terms, we obtain

Il N, [H] = - 2A’HA® + 21, (A’HA + AHA?) - 2 (3 + 11,) AHA
+ (1, I, + IIL,) (AH + HA) - 21, I, H . (5.23)

Substitution of Rivlin’s identities (5.7) and (5.8) into (5.23) yields

1z N, (H] = - 411, AHA + (i, 11, + 311L,) (AH + HA) - 41, I, H
- 204(A, H) A* + 204(A, H) A - 2111, 0,(A, H) T, (5.24)

where o, and o, are defined by (5.11) and (5.12), and

oA, H) =tr [(1, A+ (I, - ) A - L, T) H)
=L Loy + M, -3) Ly -1, 1, . (5.25)

By using N, [H] = M, [AH - HA), (5.20) and (5.21) with H — HA - AH, we also obtain
Ili; N, [H] = A (A*H + HA® - 24AHA) 4

= A’HA + AHA® - 28’HA?
=-2AHA? + 1; (A’HA + AHAY) -2 1I; AHA + I (AH + HA) (5.26)
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where the last formula follows from the Cayley-Hamilton theorem for A. In view of (4.5), and (4.8),,
the formulas (5.22)—(5.26) yield direct solutions of the tensor equations (4.2), (4.3), and (4.7). The
direct solution of (4.2) or (4.3) obtained by substituting (5.23) into (4.5), is equivalent to the first of
two formulas obtained by Mehrabadi and Nemat-Nasser (1987); cf. equation (8.8) and the formula
preceding (8.17) in their paper.* Their second formula is similar to the one obtained by substituting
(5.24) into (4.5); Rivlin's identity (5.9) may be used to obtain their result from ours and vice versa. -

Now we derive some formulas for L, [H] which are valid for any tensor H. Substitution of (5.23)

into the expression (3.25), for L, in terms of N, yields

21z L, [Hl = AHA - 1, (AH + HA) + (3 + IL) H
+ L, UL, A7V HA™ - 1, (A"'H + HA™") . (5.27)

This formula was stated without proof by Leonov (1976) and Stickforth and Wegener (1988). Leonov
attributes (5.27) to L. M. Zubov; Stickforth and Wegener refer the reader to Stickforth (1982-1983)
for a proof. Substitution of the formula (5.3) for A™! into (5.27) vields

211, LI L, [H] =1, A°lHA® - I (A’HA + AHA?Y)
+ Iz (A’H + HA® + (13 + 11I,) AHA
- B, (AH + HA) + (3 1L, + 1, 1) H . (5.28)

This formula is due to Hoger and Carlson (1984); they derived it under the assumption that H is
symmetric and then observed that the formula is valid for any H. In view of (3.1), the formulas (5.27)
and (5.28) yield direct formulas for the solution X of the tensor equation AX + XA = H for arbitrary
H.

Obscrve that when G € P (A)*, the simple formulas (5.16)<5.18) for L, (G] do not follow
immediately from (5.27) or (5.28). However, Hoger and Carlson (1984) noted that substitution of
Rivlin’s identities (5.7)—~(5.9) into (5.28) yields

*The last term on the right-hand side of their first formula contains & misprint; the term should read I, II,, D.
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M; L, (H=-(AH+HA) + Q2-1,) H
+By (A H) A+ Bi(A, H) A +BA, H) I ; (5.29)

cf. their equation (2.7) for expressions for the isotropic scalar functions B,. They observed that if

H e Skw then the [, are zero, and consequently, (5.29) reduces to (5.18) for skew G. Indeed, it is
clear from their expressions for the B,(A, H) that they reduce to zero for any H € P (A)*, and thus
that (5.18) is a special case of (5.29). By using a representation for isotropic tensor functions of two
symmetric tensors, together with his formula for L, [G] when G € Skw (see (5.18)), Sidoroff (1978)
also obtained (5.29). His expressions for the f; are more compact than those of Hoger and Carlson;
however, Sidoroff’s expressions involve A~! and A™2 and thus may be less useful for some

applications. Other direct formulas for L, iu terms of A and A’! follow from (3.23),, and (5.19);:

2L, [H=[H- —— A (AH - HA) A] A™!
T,

=HA + Tll— A (H - AHA™Y) A

I,

=A"[H+TIII_Z(AH-HA)A]

i

—AH+ I_III— AMH-ATHA)A (5.30)

A

6. FORMULAS FOR THE TWO-DIMENSIONAL CASE

In this section we derive direct formulas for the fourth-order tensors L,, M, and N, under the
assumption that the underlying vector space ¥ is two-dimensional. We begin by listing some identities

for sccond-order tensors which will be used in the derivation of these formulas. The principal

invariants of a second-order tensor B are denoted by I and I1,:
Ig=tr B, Il :=detB. 6.1
From the Cayley-Hamilton theorem we obtain
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A= A-1,1, MA'=L,1-4A. (6.2)
The following identities are due to Rivlin (1955):
AH +HA=1L, H+1,A+BA, H)I, (6.3)
AHA =1, H+ L, A-1, 1,1, (6.4)
where
Bi(A, H)=1r [(A -1, D H)

Observe that if H € P (A)*, then all but the first terms on the right-hand side of Rivlin’s identities
(6.3) and (6.4) vanish:

AH +HA=1H, AHA=1LLH, VHe ?A)". (6.6)

Now suppose that G € P (A)", in which case L, [G] € P(A)* also. If we sct H = L, [G] in (6.6),
and use the fact that AL, [G] + L, [G] A = G for any tensor G, we obtain the following simple

formula for L, [G]:
LLI[GI=G, VGe P@A). (6.7)
In particular, the formula (6.7) holds for any G € Skw. Since M, (H] = L, [AH - HA], and since
AH - HA € P(A)* for any tensor H, by setting G = AH — HA in (6.7) we obtain the following
simple formula for M, [H):
1, M, [H| = AH - HA . (6.8)
This formula was obtained by Mehrabadi and Nemat-Nasser (1987) using a different method.

Since N, [H) = M, [AH - HA], by replacing H with AH - HA in (6.8) we obtain the formula

I, N, [H] = A’H + HA? - 24HA . (6.9)
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Substitution of (6.2), into (6.9) yields
I, Ny[Hl=-2AHA + 1, (AH + HA) - 21, H . (6.10)

Recall that X = L, [H] is the solution of the tensor equations (4.2) and (4.3). As an application of
the formula (6.10) for N, [H], observe that substitution of (6.10) into the identity (4.5), yields the
formulas
21, L2 [Hl=AHA + I, H
=20 H+L zA-1, 1,1. (6.11)

The second formula follows from the first by Rivlin’s identity (6.4). A formula equivalent to (6.11),
was obtained by Hoger (1986) using a different method; cf. equation (4.5) and the equation preceding
(4.3) in her paper.
Finally, we derive some formulas for L, [H] which are valid for any tensor H. Substitution of
(6.10) into (3.25), yields
2L L [Hl=H+1, ATHA™" . (6.12)
This also follows from (6.11), with A ~> A™" and the identitites I,.1 = I/II, and II,1 = 1/1I,. Recall
that A™! can be expressed in terms of A by the simple formula (6.2),. By substituting (6.2), into
(6.12) and expanding, we obtain
21,11, L, [H] = AHA - 1, (AH + HA) + (I}+ 1) H. (6.13)
Substitution of Rivlin’s identities (6.3) and (6.4) into (6.13) yields
2L, 0, L, (HM=21LLH+B,(A HA+BA DI, (6.14)

where B, is given by (6.5), and

Bo(A, H) = tr [ (13- I,) I - 1, A) H]
=(C-1) Iy -1, L. (6.15)

24




The formulas (6.13) and (6.14) were obtained by Hoger and Carlson (1984).
7. AN APPLICATION TO THE KINEMATICS OF RIGID MOTIONS

The material in this section, with the exception of the last equation, is taken from § 1.10 of the
textbook by Truesdell (in press). Let W denote the spin tensor. Let M, E and J denote the rotational
momentum, the Euler tensor and the tensor of inertia of a body relative to the (possibly time -
dependent) point x,. J and E are symmetric positive-definite tensors which are related as follows:

J=WEYI-E. .1

If the body is undergoing a rigid motion, and if x, is either the location of the center of mass of the
body or a fixed point of the body, then the rotational momentum relative to x, is related to the spin

tensor and the Euler tensor relative 10 x, by the formula
= - (EW + WE) . 12

Truesdell (in press) utilized Guo’s formula (see (5.18)) to solve (7.2) for the spin tensor in terms of

the rotational momentum and the Euler tensor:

-1

W=__[12—I M - (E*M ME’]. i
I 10 - 1, (- 1) e - (5" + waE) 9

The purpose of this section is to point out that W has a simpler expression in terms of the tensor of
inertia. Indeed, since the solution of (7.2) is W = L [-M], by setting A = E and G = -M in (5.4),
(5.5) and (5.16) and using (7.1), we find that

1
W=-__JMJ. 4
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